121 research outputs found

    Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering

    Full text link
    We report that rhomb-shaped metal nanoantenna arrays support multiple plasmonic resonances, making them favorable bio-sensing substrates. Besides the two localized plasmonic dipole modes associated with the two principle axes of the rhombi, the sample supports an additional grating-induced surface plasmon polariton resonance. The plasmonic properties of all modes are carefully studied by far-field measurements together with numerical and analytical calculations. The sample is then applied to surface-enhanced Raman scattering measurements. It is shown to be highly efficient since two plasmonic resonances of the structure were simultaneously tuned to coincide with the excitation and the emission wave- length in the SERS experiment. The analysis is completed by measuring the impact of the polarization angle on the SERS signal.Comment: 13 pages, 5 figure

    Spinon confinement in a quasi one dimensional anisotropic Heisenberg magnet

    Get PDF
    Confinement is a process by which particles with fractional quantum numbers bind together to form quasiparticles with integer quantum numbers. The constituent particles are confined by an attractive interaction whose strength increases with increasing particle separation and as a consequence, individual particles are not found in isolation. This phenomenon is well known in particle physics where quarks are confined in baryons and mesons. An analogous phenomenon occurs in certain magnetic insulators; weakly coupled chains of spins S=1/2. The collective excitations in these systems is spinons (S=1/2). At low temperatures weak coupling between chains can induce an attractive interaction between pairs of spinons that increases with their separation and thus leads to confinement. In this paper, we employ inelastic neutron scattering to investigate the spinon confinement in the quasi-1D S=1/2 XXZ antiferromagnet SrCo2V2O8. Spinon excitations are observed above TN in quantitative agreement with established theory. Below TN the pairs of spinons are confined and two sequences of meson-like bound states with longitudinal and transverse polarizations are observed. Several theoretical approaches are used to explain the data. A new theoretical technique based on Tangent-space Matrix Product States gives a very complete description of the data and provides good agreement not only with the energies of the bound modes but also with their intensities. We also successfully explained the effect of temperature on the excitations including the experimentally observed thermally induced resonance between longitudinal modes below TN ,and the transitions between thermally excited spinon states above TN. In summary, our work establishes SrCo2V2O8 as a beautiful paradigm for spinon confinement in a quasi-1D quantum magnet and provides a comprehensive picture of this process.Comment: 17 pages, 18 figures, submitted to PR

    LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer

    Get PDF
    We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods

    Der Umzug der Menschheit: Die transformative Kraft der Städte

    Get PDF
    Die Wucht der derzeitigen Urbanisierungsdynamik und ihre Auswirkungen sind so groß, dass sich weltweit Städte, Stadtgesellschaften, Regierungen und Internationale Organisationen diesem Trend stellen müssen. Ein „Weiter so wie bisher“, würde ohne gestaltende Urbanisierungspolitik zu einer nicht-nachhaltigen Welt-Städte-Gesellschaft führen. Nur wenn Städte und Stadtgesellschaften ausreichend handlungsfähig werden, können sie ihre Kraft für eine nachhaltige Entwicklung entfalten: In den Städten wird sich entscheiden, ob die Große Transformation zur Nachhaltigkeit gelingt. In diesem Buch werden die Erfolgsbedingungen dafür diskutiert

    Humanity on the move: Unlocking the transformative power of cities

    Get PDF
    The momentum of urbanization and its impacts are so massive that we must face up to this trend. In view of the existing cognitive, technical, economic and institutional path dependencies, a policy of business as usual – i.e. an unstructured, quasi-automatic urbanization – would lead to a non-sustainable ‘world cities society’. Only if cities and urban societies are sufficiently empowered can they make use of the opportunities for sustainability and successfully follow the urban transformation pathways. The success or failure of the Great Transformation will be decided in the cities. The WBGU discusses the relevant conditions for the success of this transformation in this report

    Towards a Learning System for University Campuses as Living Labs for Sustainability

    Get PDF
    Universities, due to their sizeable estates and populations of staff and students, as well as their connections with, and impact within, their local and wider communities, have significant environmental, social and economic impacts. There is a strong movement for universities to become leaders in driving society towards a more sustainable future, through improving the sustainability of the built environment and the universities’ practices and operations, and through their educational, research and wider community engagement missions. Around the globe the concept of ‘Living Labs’ has emerged as an instrument to integrate these different aspects to deliver sustainability improvements, through engaging multiple stakeholders in all of these areas, and through the co-creation of projects to improve the sustainability of the campus environment and operations, and to link these to the education, research, and wider community missions of the institution. This chapter describes a living, shared framework and methodology, the ‘Campus as Living Lab’ learning system, created through global participatory workshops and Living Lab literature, aimed at supporting universities and their Sustainability (Coordinating) Offices in the development and monitoring of Living Lab projects. The framework includes seven categories of supportive data collection and three levels of details to meet different requirements of potential users. The Living Lab framework presented in this chapter, aims to create value and help universities maximise the benefit of Living Lab projects within an institution, support monitoring, reflection and learning from projects, and facilitate communication with stakeholders, and the sharing of practices and learning between peers across the globe. As a living shared, framework and learning system, the framework will adapt and develop over time and within different contexts. To provide feedback and fast (practical) learning from users, the system will be further developed to facilitate transparent peer reviewing

    Development and justice through transformation: The Four Big ‘I’s. Special Report

    Get PDF
    2015 saw a historic double success for sustainability and climate policy. The 2030 Agenda for Sustainable Development, with its Sustainable Development Goals (SDGs), and the Paris Agreement on climate ­protection establish a system of ambitious policy goals for the world. The group of twenty major ­industrialized and emerging economies (G20) now needs to resolutely advance implementation of both agreements, seizing the opportunity of this ‘Great Transformation’ to sustainability as a unique ­modernization project that could offer substantial economic development opportunities. Complete ­decarbonization of the world economy, which is necessary to avoid the gravest climate risks, can only be achieved by profoundly ­transforming energy systems and other high-emissions infrastructures. This transformation could inspire ­Innovation and channel Investment into sustainability and climate protection, and into the kinds of ­sustainable Infrastructures that need to be ­established and expanded. At the same time, the transformation could combat inequality and promote ­Inclusion within societies and globally, thus becoming an equity project

    Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag

    Get PDF
    HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes

    Direct neutrino-mass measurement with sub-electronvolt sensitivity

    Get PDF
    corecore